
Armstrong

Air Vent ID Charts

	4-1. Armstrong Air			Max.				Max.			Con	nectio	n Siz	e		Located
Illustration	Туре	Flow Direction	Connection Type	Allow. Press. barg	°C	Body Material	Model	Oper. Press. barg	1/8"	1/4"			1"	1 1/2"	2"	on Page
	Series 1-AVCW See-thru Free Floating Lever Air Vents for Ozone Applications	→	Screwed	10	66	PBT Cap (Polybutylene Terephthalate) Polysulfone Body	1-AVCW	10			•	**				AV-410
	Series 1-AVC See-Thru Free Floating Lever Air/Gas Vents	→	Screwed	10	66	Nylon Cap Polysulfone Body	1-AVC	10			•	**				AV-396
	Series 21-AR Fixed Pivot Ball Float Air/Gas Vents	1	Screwed	17	232	ASTM A48 Class 30 Cast Iron	21-AR	17			•	•				AV-397
	Series 21-312 Fixed Pivot Ball	┌ ►↑	Screwed	41	38	I ASTIVLATUS I	21-312AR	4,5			•	•				
	Float Air/Gas Vents		Socketweld Flanged †††	or 34	or 399	Forged Steel	21-312VAR	41			•	•				AV-397
	Series 1, 2, 3, 6 Free Floating			21	93	ASTM A48	1-AV †	21			*	*				
	Lever Air/Gas Vents		Screwed Flanged †††	17	232	Class 30	2-AV 3-AV 6-AV	17			•	•	•	•	•	AV-398
	Series 30 Free Floating Lever Air/Gas			41 or 34	38 or 399		32-AV	41			•	•				
	Vents		Screwed Socketweld Flanged †††	69 or 41	38 or 399	ASTM A105 Forged Steel	33-AV	62			•	•	•			AV-400
				69 or 41	38 or 399		36-AV	69						•	•	
	Series 10 Free Floating Lever Air/Gas Vents		Screwed	34 or 30	38 or 260		11-AV ††	28			•	**				
	Vents	*	Socketweld (22 and 13 only) Flanged †††	38 or 33	38 or 260	304-L Stainless Steel	22-AV	38				•				AV-404
			riangeu	39 or 34	238 or 260		13-AV	39					•			
	Series HLAR High Leverage	A .	Screwed	69	38		2313 HLAR				•	•	•			
	Air/Gas Vents		Socketweld Flanged †††	or	or 399	ASTM A105 Forged Steel	2315 HLAR						•	1 1/4"● 1 1/2"●		AV-402
	Series HLAR			400	00		2316 HLAR							•	•	
	High Leverage Air/Gas Vents	↑	Screwed Socketweld	103 or 62	38 or 454	ASTM A182 Gr. F22	2413 HLAR				•	•	•			AV-402
			Flanged †††	125 or 62	38 or 482	Forged Steel	2415 HLAR 2416 HLAR						•	1 1/4"• 1 1/2"•		

[▲] Alternate inlet 1/2"

^{★1/4&}quot; outlet connection †† Side connection not available

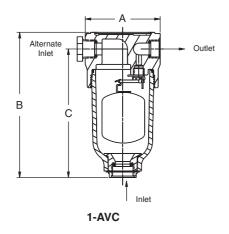
^{★★1/2&}quot; outlet connection † Side connection available ††† Flange selection may limit pressure and temperature rating.

Air Vent ID Charts

Table AV-395	i-1. Armstrong <i>l</i>	Air Vents														
Illustration	Туре	Flow	Connection	Max. Allow.	TMA	Body	Model	Max. Oper.			Con	nectio	n Size) -		Located on
	71.	Direction	Туре	Press. barg	°C	Material		Press. barg	1/8"	1/4"	1/2"	3/4"	1"	1 1/2"	2"	Page
	Series HLAR High Leverage			146 or 117	38 or 482		25133G- HLAR	146			•	•	•			
	Air/Gas Vents		Screwed Socketweld Flanged †††	174 or 138	38 or 482	ASTM A182 Gr. F22 Forged Steel	25155G- HLAR	172				•	•	•		AV-402
				255 or 207	38 or 482		26155G- HLAR	186					•	•		
	Series TTF Thermostatic Air Vents	<u>↑</u>	Straight-Thru Right Angle	20	232	304-L Stainless Steel	TTF-1 TTF-1R	21			•	•				AV-406
	TAVB Thermostatic Bellows with	1	Straight-Thru	20	232	304L	TAVB-2	10			•					AV-407
	Integral Vacuum Breaker	j	Screwed			Stainless Steel	TAVB-3					•				
	Series TV-2 Thermostatic Air Vents	†	Screwed	9	177	ASTM B62 Cast Bronze	TV-2	8,5			•					AV-409
	Series TS-2 Thermostatic Air Vents	├	Threaded	3,5	149	ASTM B62 Bronze	T\$-2	3,5			•	•				AV-408
	AV-11, AV-13 Hydronic System Air Vents	1	Screwed	3,5	99	Brass	AV-11	3,5	•		•	•				AV-411
				10			AV-13	10								

[▲] Alternate inlet 1/2"

 ^{★ 1/4&}quot; outlet connection
 ★ ★ 1/2" outlet connection
 † Side connection available
 ▲ Alternate inlet 1/2


 †† Side connection not available
 †† Flange selection may limit pressure and temperature rating.

 All models comply with the Pressure Equipment Directive PED 97/23/EC. For details, see specific product page or Armstrong PED Certificate.

1-AVC See-Thru Air Vent

For Pressures to 10 bar or Specific Gravity Down to 0,80

A See-Thru Body - So You'll Know When It's Working

Now, you can literally see what you've been missing – the early warning signs of a system problem. Since you'll know the operating condition of the air vent, you won't have to waste time and money scheduling maintenance that isn't needed. In other words, you will be able to react to a condition before it becomes a problem.

A simple ball float mechanism requiring no electricity to operate, the new Armstrong 1-AVC discharges automatically only when air/gas are present. That means no liquid loss as with manual venting.

An Inside Look

See-thru body means you can observe changing conditions as they occur. See a problem in the making – instead of having to deal with it after the fact.

Table AV-396-1. 1-AVC List of Materials							
Name of Part	Material						
Cap	Reinforced Nylon						
Body	Polysulfone*						
O-Rings (Body Cap and Fitting)	Nitrile Elastome Compound						
Float Lever and Screws	Stainless Steel						
Valve & Seat	Stainless Steel						
Fitting & Pipe Plug	Reinforced Nylon						
Retainer Ring	Zinc Plated Steel						
* UV sensitive.							

Efficient Operation

Simple ball float mechanism discharges only when air is present so it doesn't waste liquid.

Positive Seating

Free-floating valve mechanism assures positive seating so it prevents liquid loss. There are no fixed pivots to wear or create friction, and wear points are heavily reinforced for long life.

Reduced Maintenance

Stainless steel internals mean corrosion resistance and reduced maintenance.

Corrosion Resistance

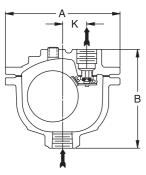
Long-lasting polysulfone body and reinforced nylon cap resist corrosion and provide long, trouble-free service life.

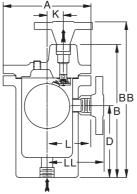
Compare... and Save the Difference

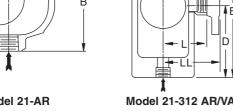
Seeing is really believing – especially when you compare the Armstrong see-thru air vent with manual venting. Measure the differences in the time and money you can save with a more efficient, easier-to-maintain system. For more information or technical assistance, contact your local Armstrong Representative.

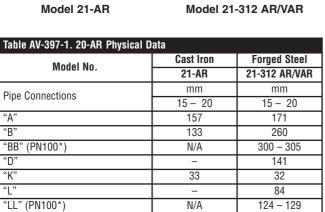
Note: The Armstrong 1-AVC should not be used in an environment where there are high levels of ketones or chlorinated or aromatic hydrocarbons.

Table AV-396-2. 1-AVC Physical Data							
	mm						
Inlet Connection	15 – 20						
Outlet Connection	15						
"A" Face-to-Face	89						
"B" Height	171						
"C" Bottom to டி	152						
Maximum Allowable Pressure (Vessel Design)	10 bar @ 65°C						
Maximum Operating Pressure	10 bar						
Specific Gravity Range	1,00 to 0,80						
Weight in kg (screwed)	0,45						


All sizes comply with the article 3.3 of the PED (97/23/EC).


Table AV-396-3. 1-AVC Capacity								
Differential Pressure	Orifice size (in)	m³/h						
bar	Offitte Size (III)	III /II						
1,0		7,3						
2,0		11,0						
3,5		16,1						
5,0	1/8"	22,2						
7,0		28,7						
8,5		34,8						
10,0		41,1						


Note: Discharge of air through an orifice in m³/h at a standard atmospheric pressure of 1 bar(a) and 21°C.


Fixed Pivot Ball Float Air/Gas Vents For Pressures to 41 bar or Specific Gravity Down to 0,83

4

N/A

17 bar @ 232°C*

15,8 - 17,8

41 bar @ 38°C

34 bar @ 399°C

Weight in kg (screwed & SW)

Weight in kg (flanged PN100*)

Maximum Allowable Pressure

(Vessel Design)

All models comply with the article 3.3 of the PED (97/23/EC).

Table AV-397-2. 21-AR Maximum Operating Pressures							
Minimum Specific Gravity	0,49	0,84					
Float weight in grams	64	118					
Orifice (in)	Maximum Operati	ng Pressure in bar					
7/32"	1,2	-					
3/16"	1,6	-					
5/32"	2,3	-					
9/64"	2,8	-					
1/8"	3,6	_					
3/32"	6,4	-					
5/64"	9,2	-					
1/16"	14,0	-					
1/16"	-	17,0					

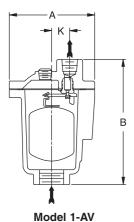
21-AR – A small, high-quality economical air vent. It employs a single lever with a fixed pivot and viton seat, ensuring a tight shut-off.

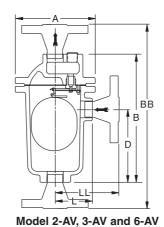
21-312 AR/VAR - Forged steel version of the Model 21 with a larger float and higher leverage. Available with screwed, socketweld or flanged connections.

Table AV-397-3. 21-312 AR/VAR Maximum Operating Pressures						
	Minimum Specific Gravity	0,83				
Model	Float weight in grams	143				
Model	Orifice (in)	Maximum Operating Pressure in bar				
	1/4"	1,5				
	7/32"	1,9				
21-312 AR	3/16"	2,7				
	5/32"	3,8				
	9/64"	4,7				
	1/8"	12,0				
32-312 VAR	3/32"	21,0				
02-012 VAII	5/64"	31,0				
	1/16"	41,0				

Table AV-397-4. L	ist of Materials						
Model No.	Valve	Seat	Leverage System	Float	Body & Cap	Gasket	Bolting
21-AR	Stainless Steel	Stainless Steel with	Stainless	Stainless	ASTM A48 Class 30 Cast Iron	Non-Asbestos	Bolts SAE Gr. 2 Nuts ASTM A563 Gr. A
21-312 AR 21-312 VAR		*Viton Insert	Steel	Steel	ASTM A105 Forged Steel	- Non-Aspesios	Bolts and Nuts ASTM B633 Type 1

Note: Above vents available in T-316 SS bodies and caps and all SS internals. Aluminum body and cap available for Model 21-AR only.


Other flange sizes, ratings and face-to-face dimensions are available on request.


^{**} Viton valve seat insert limited to 204°C.

^{*} Other seat insert materials available. Consult factory.

Free Floating Lever Air/Gas Vents — Cast Iron For Pressures to 21 bar or Specific Gravity Down to 0,40

Armstrong free floating lever Air/Gas Vents use the same bodies, caps, lever mechanisms, valves and seats of Armstrong inverted bucket steam traps that have been proven in years of service.

Elliptical floats and high leverage make it possible to open large orifices to provide adequate capacity for vent size and weight. The hemispherical valve, seat and leverage are identical in design, materials and workmanship to those for saturated steam service up to 69 bar, with the exception of the addition of a guidepost to assure a positive, leaktight valve closing under all conditions.

1-AV – A cast iron air vent that uses a positive-closing free floating lever to ensure leaktight closing under all conditions. This vent is good for low capacity air/gas venting up to 21 bar.

2-AV, 3-AV and 6-AV - Cast iron vents using the same proven free floating lever mechanisms used in Armstrong steam traps. For applications where high air/gas venting capacity is required up to 17 bar.

Table AV-398-1. Physical Data								
Model No.	Cast Iron							
Model No.	1-AV**	2-AV	3-AV	6-AV				
Pipe Connections	mm	mm	mm	mm				
ripe connections	15* – 20*	15 – 20	20 – 25	40 – 50				
"A"	89	133	162	259				
"B"	140	203	273	432				
"BB" (PN40***)	N/A	320 - 330	400 – 392	562 – 568				
"D"	-	111	155	213				
"K"	21	-	-	-				
"L"	-	62	73	123				
"LL" (PN40***)	N/A	179 – 189	203 – 195	180 – 186				
Weight in kg (screwed)	1,8	6	10	36				
Weight in kg (flanged PN40***)	N/A	8,7 - 9,6	13,6 - 14,2	42,6 - 45,0				
Maximum Allowable Pressure (Vessel Design)	21 bar @ 93°C 17 bar @ 232°C	17 bar @ 232°C	17 bar @ 232°C	17 bar @ 232°C				

^{*} Outlet connection 1/4"

Shade indicates products that are CE Marked according to the PED (97/23/EC). All the other models comply with the Article 3.3 of the same directive.

Table AV-398-2. L	ist of Materials						
Model No.	Valve & Seat	Leverage System	Float	Body & Cap	Gasket	Bolts	Nuts
1-AV		-		ASTM A48		ASTM A193 Gr. B7	
2-AV		Stainless Steel			Non-asbestos		ASTM A563
3-AV		Statiliess Steel		Class 30 Cast Iron	14011-45065105	SAE Gr. 2	Gr. A
6-AV				040111011			

¹⁻AV available with side connection if specified on order. On models 2-AV, 3-AV and 6-AV, pipe size of side connections is same as that of inlet and outlet connections. Some floats are oil filled. Consult factory for details.

Other flange sizes, ratings and face-to-face dimensions are available on request.

Free Floating Lever Air/Gas Vents — Cast Iron For Pressures to 21 bar or Specific Gravity Down to 0,40

Table AV-399-1. Maximum Operating Pressures							
Minimum Specific Gravity	0,80						
Orifice Size (in)	Maximum Operating Pressure in bar						
1/8"	10						
7/64"	12						
#38	15						
5/64"	21						

Table AV-399-2. 2-AV Ma	aximum Ope	erating Pres	sures								
Specific Gravity*	1,00	0,95	0,90	0,85	0,80	0,75	0,70	0,65	0,60	0,55	0,50
Float weight in grams	217	206	195	184	174	163	152	141	130	119	109
Orifice Size (in)		Maximum Operating Pressure in bar									
5/46"	1,8	1,8	1,7	1,6	1,5	1,4	1,3	1,2	1,1	1,0	0,9
1/4"	3,0	2,9	2,7	2,6	2,4	2,3	2,1	2,0	1,8	1,7	1,5
3/16"	6,7	6,4	6,0	5,7	5,4	5,0	4,7	4,4	4,1	3,7	3,4
5/32"	12,0	11,0	10,4	9,8	9,3	8,7	8,1	7,6	7,0	6,4	5,8
1/8"	17,0	17,0	17,0	17,0	16,0	15,0	14,0	13,0	12,0	11,0	10,0
7/64"	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	15,0	14,0	13,0
#38	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	16,0
5/64"	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0

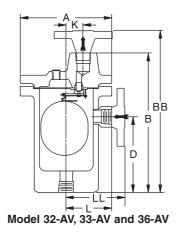

Table AV-399-3. 3-AV Ma	aximum Opera	ting Pressures							
Specific Gravity	1,00	0,95	0,90	0,85	0,80	0,75	0,70	0,65	0,60
Float weight in grams	423	402	381	360	339	318	296	275	254
Orifice Size (in)				Maximum	Operating Pres	sure in bar			
1/2"	1,5	1,4	1,3	1,3	1,2	1,1	1,0	1,0	0,9
3/8"	3,1	3,0	2,8	2,7	2,5	2,3	2,2	2,0	1,9
5/16"	5,0	4,7	4,5	4,2	4,0	3,8	3,5	3,3	3,0
9/32"	6,6	6,3	6,0	5,6	5,3	5,0	4,7	4,3	4,0
1/4"	9,9	9,4	8,9	8,5	8,0	7,5	7,0	6,5	6,0
7/32"	14,0	13,0	13,0	12,0	11,0	10,7	10,0	9,3	8,6
3/16"	17,0	17,0	17,0	17,0	17,0	16,0	15,0	14,0	13,0
5/32"	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0

Table AV-399-4. 6-AV M	aximum O	perating F	Pressures										
Specific Gravity*	1,00	0,95	0,90	0,85	0,80	0,75	0,70	0,65	0,60	0,55	0,50	0,45	0,40
Float weight in grams	2 084	1 979	1 875	1 771	1 667	1 563	1 459	1 354	1 250	1 146	1 042	938	833
Orifice Size (in)		Maximum Operating Pressure in bar											
1 1/6"	1,5	1,5	1,4	1,3	1,2	1,2	1,1	1,0	0,9	0,8	0,8	0,7	0,62
7/8"	2,4	2,3	2,2	2,0	1,9	1,8	1,7	1,6	1,5	1,3	1,2	1,1	1,0
3/4"	3,5	3,3	3,1	3,0	2,8	2,6	2,4	2,3	2,1	1,9	1,8	1,6	1,4
5/8"	5,3	5,0	4,8	4,5	4,3	4,0	3,7	3,5	3,2	2,9	2,7	2,4	2,2
9/16"	7,0	6,7	6,3	6,0	5,6	5,3	4,9	4,6	4,2	3,9	3,6	3,2	3,9
1/2"	10,2	9,7	9,2	8,7	8,2	7,7	7,2	6,7	6,2	5,6	5,1	4,6	4,1
7/16"	14,0	14,0	13,0	12,0	12,0	11,0	10,2	9,5	8,7	8,0	7,3	6,6	5,9
3/8"	17,0	17,0	17,0	17,0	17,0	17,0	16,0	15,0	14,0	13,0	12,0	10,4	9,3
11/32"	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	15,0	14,0	12,0
5/16"	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	16,0
9/32"	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0
1/4"	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0

If specific gravity falls between those shown, use next lowest: e.g., if actual gravity is 0,73, use 0,70 specific gravity data.

Free Floating Lever Air/Gas Vents — Forged Steel For Pressures to 69 bar or Specific Gravity Down to 0,40

32-AV, 33-AV and 36-AV - Forged steel vents using the same proven free floating lever mechanisms used in Armstrong steam traps.

For applications where high air/gas venting capacity is required up to 69 bar. Available with screwed, socketweld or flanged connections.

Table AV-400-1. 30-A	V Series List of Ma	terials				
Model No.	Valve & Seat	Leverage System	Float	Body & Cap	Gasket	Bolting
32-AV				ASTM A105		Bolts ASTM A193 Gr. B7
33-AV		Stainless Steel		Forged Steel	Non-asbestos	Nuts ASTM A194 Gr. 2H
36-AV				Torgod oteer		Nuts Activi A134 di. 211

Table AV-400-2. 30-AV Series Physic	Table AV-400-2. 30-AV Series Physical Data								
Model No.		Forged Steel							
Model No.	32-AV †	33-AV †	36-AV †						
Pipe Connections	15 – 20	20 – 25	40 – 50						
"A"	171	203	301						
"B"	259	295	435						
"BB" (PN100*)	300 – 305	343 – 349 – 355	500 – 505						
"D"	141	154	229						
"K"	32	37	54						
"L"	86	98	154						
"LL" (PN100*)	127 – 132	145 – 153 – 159	198 – 204						
Weight in kg (screwed & SW)	14	22	74						
Weight in kg (flanged PN100*)	15,8 – 17,8	25,0 - 26,0	83,2 - 87,2						
Maximum Allowable Pressure (Vessel Design)	41 bar @ 38°C 34 bar @ 399°C		@ 38°C ⊋ 399°C						

[†] Available in Type 316 SS. Consult factory. Pipe size of side connections if provided is same as that of inlet and outlet connections. Some floats are oil filled. Consult factory for details.

Shade indicates products that are CE Marked according to the PED (97/23/EC). All the other models comply with the Article 3.3 of the same directive.

^{*} Other flange sizes, ratings and face-to-face dimensions are available on request.

Free Floating Lever Air/Gas Vents — Forged Steel For Pressures to 69 bar or Specific Gravity Down to 0,40

High-Temperature Service

Maximum allowable working pressures of floats decrease at temperatures above 38°C. Allow for approximately:

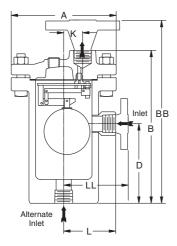
- 10% decrease at 93°C
- 15% decrease at 147°C
- 20% decrease at 204°C

The float is not always the limiting factor, however. Consult with Armstrong Application Engineering if you have a hightemperature application that also requires maximum operating pressures.

Sour Gas Service

Forged steel and stainless steel traps can be modified to resist hydrogen sulfide stress corrosion. These modifications involve annealing the float, which will reduce the maximum working pressure of the float to about half of its normal value. Consult Armstrong Application Engineering for allowable working pressures.

Specific Gravity	1,00	0,95	0,90	0,85	0,80	0,75	0,70	0,65
Float weight in grams	335	318	301	285	268	251	234	218
Orifice Size (in)			М	aximum Operati	ng Pressure in b	ar		
5/16"	2,8	2,7	2,6	2,4	2,3	2,1	2,0	1,9
1/4"	4,7	4,4	4,2	4,0	3,7	3,5	3,3	3,0
3/16"	10,3	9,8	9,3	8,8	8,2	7,7	7,2	6,7
5/32"	18,0	17,0	16,0	15,0	14,0	13,0	12,0	12,0
1/8"	30,0	29,0	27,0	26,0	24,0	23,0	21,0	20,0
7/64"	39,0	37,0	35,0	33,0	31,0	29,0	27,0	25,0
#38	41,0	41,0	41,0	41,0	39,0	36,0	34,0	31,0
5/64"	41,0	41,0	41,0	41,0	41,0	41,0	41,0	41,0


Table AV-401-2. 33-AV N	Aaximum Oper	ating Pressure	es .						
Specific Gravity*	1,00	0,95	0,90	0,85	0,80	0,75	0,70	0,65	0,60
Float weight in grams	423	402	381	360	339	318	296	275	254
Orifice Size (in)				Maximum	Operating Pres	sure in bar			-
1/2"	1,5	1,4	1,3	1,3	1,2	1,1	1,0	1,0	0,9
3/8"	3,1	3,0	2,8	2,7	2,5	2,3	2,2	2,0	1,9
5/16"	5,0	4,7	4,5	4,2	4,0	3,8	3,5	3,3	3,0
9/32"	6,6	6,3	6,0	5,6	5,3	5,0	4,7	4,3	4,0
1/4"	9,9	9,4	8,9	8,5	8,0	7,5	7,0	6,5	6,0
7/32"	14,0	13,0	13,0	12,0	11,0	10,7	10,0	9,3	8,6
3/16"	21,0	20,0	19,0	18,0	17,0	16,0	15,0	14,0	13,0
5/32"	33,0	32,0	30,0	28,0	27,0	25,0	24,0	22,0	20,0
1/8"	62,0	62,0	61,0	58,0	54,0	51,0	48,0	44,0	41,0
7/64"	62,0	62,0	62,0	62,0	62,0	62,0	61,0	57,0	52,0

/laximum	Operating	Pressures	5									
1,00	0,95	0,90	0,85	0,80	0,75	0,70	0,65	0,60	0,55	0,50	0,45	0,40
2 084	1 979	1 875	1 771	1 667	1 563	1 459	1 354	1 250	1 146	1 042	938	833
				Ma	ximum Op	erating Pr	essure in	bar				
1,5	1,5	1,4	1,3	1,2	1,2	1,1	1,0	0,9	0,8	0,8	0,7	0,62
2,4	2,3	2,2	2,0	1,9	1,8	1,7	1,6	1,5	1,3	1,2	1,1	1,0
3,5	3,3	3,1	3,0	2,8	2,6	2,4	2,3	2,1	1,9	1,8	1,6	1,4
5,3	5,0	4,8	4,5	4,3	4,0	3,7	3,5	3,2	2,9	2,7	2,4	2,2
7,0	6,7	6,3	6,0	5,6	5,3	4,9	4,6	4,2	3,9	3,6	3,2	3,9
10,2	9,7	9,2	8,7	8,2	7,7	7,2	6,7	6,2	5,6	5,1	4,6	4,1
14,0	14,0	13,0	12,0	12,0	11,0	10,2	9,5	8,7	8,0	7,3	6,6	5,9
23,0	22,0	21,0	19,0	18,0	17,0	16,0	15,0	14,0	13,0	12,0	10,4	9,3
30,0	29,0	27,0	26,0	24,0	23,0	21,0	20,0	18,0	17,0	15,0	14,0	12,0
39,0	37,0	35,0	33,0	31,0	29,0	27,0	26,0	24,0	17,0	17,0	17,0	16,0
51,0	49,0	46,0	44,0	41,0	39,0	36,0	33,0	31,0	17,0	17,0	17,0	17,0
69,0	69,0	67,0	64,0	60,0	56,0	53,0	49,0	45,0	17,0	17,0	17,0	17,0
69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	64,0	17,0	17,0	17,0	17,0
69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	17,0	17,0	17,0	17,0
	1,00 2 084 1,5 2,4 3,5 5,3 7,0 10,2 14,0 23,0 30,0 39,0 51,0 69,0 69,0	1,00 0,95 2 084 1 979 1,5 1,5 2,4 2,3 3,5 3,3 5,3 5,0 7,0 6,7 10,2 9,7 14,0 14,0 23,0 22,0 30,0 29,0 39,0 37,0 51,0 49,0 69,0 69,0 69,0 69,0	1,00 0,95 0,90 2 084 1 979 1 875 1,5 1,5 1,4 2,4 2,3 2,2 3,5 3,3 3,1 5,3 5,0 4,8 7,0 6,7 6,3 10,2 9,7 9,2 14,0 14,0 13,0 23,0 22,0 21,0 30,0 29,0 27,0 39,0 37,0 35,0 51,0 49,0 46,0 69,0 69,0 67,0 69,0 69,0 69,0	2 084 1 979 1 875 1 771 1,5 1,5 1,4 1,3 2,4 2,3 2,2 2,0 3,5 3,3 3,1 3,0 5,3 5,0 4,8 4,5 7,0 6,7 6,3 6,0 10,2 9,7 9,2 8,7 14,0 14,0 13,0 12,0 23,0 22,0 21,0 19,0 30,0 29,0 27,0 26,0 39,0 37,0 35,0 33,0 51,0 49,0 46,0 44,0 69,0 69,0 69,0 69,0 69,0 69,0 69,0 69,0	1,00 0,95 0,90 0,85 0,80 2 084 1 979 1 875 1 771 1 667 Ma 1,5 1,5 1,4 1,3 1,2 2,4 2,3 2,2 2,0 1,9 3,5 3,3 3,1 3,0 2,8 5,3 5,0 4,8 4,5 4,3 7,0 6,7 6,3 6,0 5,6 10,2 9,7 9,2 8,7 8,2 14,0 14,0 13,0 12,0 12,0 23,0 22,0 21,0 19,0 18,0 30,0 29,0 27,0 26,0 24,0 39,0 37,0 35,0 33,0 31,0 51,0 49,0 46,0 44,0 41,0 69,0 69,0 69,0 69,0 69,0	1,00 0,95 0,90 0,85 0,80 0,75 2 084 1 979 1 875 1 771 1 667 1 563 Maximum Op 1,5 1,5 1,4 1,3 1,2 1,2 2,4 2,3 2,2 2,0 1,9 1,8 3,5 3,3 3,1 3,0 2,8 2,6 5,3 5,0 4,8 4,5 4,3 4,0 7,0 6,7 6,3 6,0 5,6 5,3 10,2 9,7 9,2 8,7 8,2 7,7 14,0 14,0 13,0 12,0 12,0 11,0 23,0 22,0 21,0 19,0 18,0 17,0 30,0 29,0 27,0 26,0 24,0 23,0 39,0 37,0 35,0 33,0 31,0 29,0 51,0 49,0 46,0 44,0 41,0 39,0 69,0	1,00 0,95 0,90 0,85 0,80 0,75 0,70 Maximum Operating Pr Maximum Operating Pr 1,5 1,5 1,4 1,3 1,2 1,2 1,1 2,4 2,3 2,2 2,0 1,9 1,8 1,7 3,5 3,3 3,1 3,0 2,8 2,6 2,4 5,3 5,0 4,8 4,5 4,3 4,0 3,7 7,0 6,7 6,3 6,0 5,6 5,3 4,9 10,2 9,7 9,2 8,7 8,2 7,7 7,2 14,0 14,0 13,0 12,0 11,0 10,2 23,0 22,0 21,0 19,0 18,0 17,0 16,0 30,0 29,0 27,0 26,0 24,0 23,0 21,0 39,0 37,0 35,0 33,0 31,0 29,0 27,0 51,0 49,0	1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 2 084 1 979 1 875 1 771 1 667 1 563 1 459 1 354 Maximum Operating Pressure in 1,5 1,5 1,4 1,3 1,2 1,2 1,1 1,0 2,4 2,3 2,2 2,0 1,9 1,8 1,7 1,6 3,5 3,3 3,1 3,0 2,8 2,6 2,4 2,3 5,3 5,0 4,8 4,5 4,3 4,0 3,7 3,5 7,0 6,7 6,3 6,0 5,6 5,3 4,9 4,6 10,2 9,7 9,2 8,7 8,2 7,7 7,2 6,7 14,0 14,0 13,0 12,0 11,0 10,2 9,5 23,0 22,0 21,0 19,0 18,0 17,0 16,0 15,0 30,0 29,0 27,0	1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 2 084 1 979 1 875 1 771 1 667 1 563 1 459 1 354 1 250 Maximum Operating Pressure in bar 1,5 1,5 1,4 1,3 1,2 1,2 1,1 1,0 0,9 2,4 2,3 2,2 2,0 1,9 1,8 1,7 1,6 1,5 3,5 3,3 3,1 3,0 2,8 2,6 2,4 2,3 2,1 5,3 5,0 4,8 4,5 4,3 4,0 3,7 3,5 3,2 7,0 6,7 6,3 6,0 5,6 5,3 4,9 4,6 4,2 10,2 9,7 9,2 8,7 8,2 7,7 7,2 6,7 6,2 14,0 14,0 13,0 12,0 11,0 10,2 9,5 8,7 23,0 22,0	1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 2 084 1 979 1 875 1 771 1 667 1 563 1 459 1 354 1 250 1 146 Maximum Operating Pressure in bar 1,5 1,5 1,4 1,3 1,2 1,2 1,1 1,0 0,9 0,8 2,4 2,3 2,2 2,0 1,9 1,8 1,7 1,6 1,5 1,3 3,5 3,3 3,1 3,0 2,8 2,6 2,4 2,3 2,1 1,9 5,3 5,0 4,8 4,5 4,3 4,0 3,7 3,5 3,2 2,9 7,0 6,7 6,3 6,0 5,6 5,3 4,9 4,6 4,2 3,9 10,2 9,7 9,2 8,7 8,2 7,7 7,2 6,7 6,2 5,6 14,0 14,0 13,0	1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 2 084 1 979 1 875 1 771 1 667 1 563 1 459 1 354 1 250 1 146 1 042 Maximum Operating Pressure in bar 1,5 1,5 1,4 1,3 1,2 1,2 1,1 1,0 0,9 0,8 0,8 2,4 2,3 2,2 2,0 1,9 1,8 1,7 1,6 1,5 1,3 1,2 3,5 3,3 3,1 3,0 2,8 2,6 2,4 2,3 2,1 1,9 1,8 5,3 5,0 4,8 4,5 4,3 4,0 3,7 3,5 3,2 2,9 2,7 7,0 6,7 6,3 6,0 5,6 5,3 4,9 4,6 4,2 3,9 3,6 10,2 9,7 9,2 8,7 8,2 7,7 7,2 <t< td=""><td>1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 2 084 1 979 1 875 1 771 1 667 1 563 1 459 1 354 1 250 1 146 1 042 938 Maximum Operating Pressure in bar 1,5 1,5 1,4 1,3 1,2 1,2 1,1 1,0 0,9 0,8 0,8 0,7 2,4 2,3 2,2 2,0 1,9 1,8 1,7 1,6 1,5 1,3 1,2 1,1 3,5 3,3 3,1 3,0 2,8 2,6 2,4 2,3 2,1 1,9 1,8 1,6 5,3 5,0 4,8 4,5 4,3 4,0 3,7 3,5 3,2 2,9 2,7 2,4 7,0 6,7 6,3 6,0 5,6 5,3 4,9 4,6 4,2 3,9 3,6 3,2 <t< td=""></t<></td></t<>	1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 2 084 1 979 1 875 1 771 1 667 1 563 1 459 1 354 1 250 1 146 1 042 938 Maximum Operating Pressure in bar 1,5 1,5 1,4 1,3 1,2 1,2 1,1 1,0 0,9 0,8 0,8 0,7 2,4 2,3 2,2 2,0 1,9 1,8 1,7 1,6 1,5 1,3 1,2 1,1 3,5 3,3 3,1 3,0 2,8 2,6 2,4 2,3 2,1 1,9 1,8 1,6 5,3 5,0 4,8 4,5 4,3 4,0 3,7 3,5 3,2 2,9 2,7 2,4 7,0 6,7 6,3 6,0 5,6 5,3 4,9 4,6 4,2 3,9 3,6 3,2 <t< td=""></t<>

^{*} If specific gravity falls between those shown, use next lowest: e.g., if actual gravity is 0,73, use 0,70 specific gravity data.

High Leverage Ball Float Type Air Relief Traps For Low Flows at Pressures to 186 bar or Specific Gravity Down to 0,49

The Armstrong High Leverage Series of Air Relief traps were developed especially for venting gases from low specific gravity fluids at high pressures. They use standard Armstrong forged steel bodies with very high leverage air relief mechanisms. Available with screwed, socketweld or flanged connections.

Note: Models 2313-HLAR, 2316-HLAR, 2413-HLAR and 2415-HLAR are also available with cast T-316 stainless steel body and all-stainless steel internals. Consult factory.

Sour Gas Service

Forged steel and stainless steel traps can be modified to resist hydrogen sulfide stress corrosion. These modifications involve annealing the float, which will reduce the maximum working pressure of the float to about half its normal value. Consult Armstrong Application Engineering for allowable working pressures.

Table AV-402-1. Physi	cal Data – Hig	gh Leverage E	Ball Float Ty	oe Air Relief Trap)S				
Model No.	2313-HLAR	2315-HLAR	2316-HLAR	2413-HLAR	2415-HLAR	2416-HLAR	25133G-HLAR	25155G-HLAR	26155G-HLAR
Pipe	mm	mm	mm	mm	mm	mm	mm	mm	mm
Connections	15 – 20 – 25	25 – 32 – 40	40 – 50	15 – 20 – 25	25 - 32 - 40	40 – 50	15 – 20 – 25	20 – 25 – 32	25 – 32
"A"	203	248	302	219	273	318	216	263	298
"B"	295	381	435	305	379	448	362	412	613
"BB" (PN100 – 160 – 250*)	343 – 349 – 355	442 – 444 – 446	500 – 505	353 – 360 – 366	440 – 444 – 448	515 – 526	472 - 473 - 487	540 – 540 – 540	740 – 740
"D"	154	198	229	137	184	229	75	102	127
"G"	130	175	213	137	175	219	146	187	213
"K"	37	44	54	37	44	54	33	44	44
"L"	98	119	146	102	122	148	_	-	-
"LL" (PN100 – 160*)	145 – 153 – 159	171 – 173 – 175	198 – 204	149 – 156 – 162	181 – 183 – 187	211 – 244	185 – 187 – 190	214 - 214 - 214	224 – 224
Weight in kg (SW)	21	44	73	31	59	95	51	78	147
Weight in kg (flanged PN100 – 160 – 250*)	23,0 - 25,0 - 26,0	46,0 - 50,0 - 53,0	84,2 - 88,2	35,0 - 37,0 - 38,0	60,6 - 64,6 - 67,6	104,0 - 108,0	56,0 - 57,0 - 58,0	101,0 - 102,0 - 103,0	154,2 – 160,2
Maximum Allowable Pressure (Vessel Design)	4	9 bar @ 38°C I bar @ 399°C	;	103 bar @ 38°C 62 bar @ 454°C	62 bar @		146 bar @ 38°C 117 bar @ 482°C	159 bar @ 38°C 131 bar @ 482°C	255 bar @ 38°C 207 bar @ 482°C

[†] Available with cast 316 stainless steel body and all stainless steel internals. Consult factory.

Other flange sizes, ratings and face-to-face dimensions are available on request. All standard products are CE Marked according to the PED (97/23/EC).

Table AV-402-	Table AV-402-2. HLAR Series List of Materials									
Model No.	Valve & Seat	Leverage System	Float	Body & Cap	Gasket					
2313-HLAR 2315-HLAR 2316-HLAR				ASTM A105 Forged Steel	Compressed					
2413-HLAR 2415-HLAR 2416-HLAR	St	ainless Ste	el	ASTM A182	Asbestos-free					
25133G-HLAR 25155G-HLAR 26155G-HLAR				Grade F22 Forged Steel	Spiral Wound Stainless Steel non-asbestos					

Table AV-402-3. 2315-H	Table AV-402-3. 2315-HLAR Maximum Operating Pressures								
Specific Gravity	1,00 - 0,61	0,60 - 0,49							
Float weight in grams	255	191							
Orifice size (in)	Maximum Operating Pressure in bar								
3/16"	56								
5/32"		41							
1/8"	69	4'							
3/32"									

High Leverage Ball Float Type Air Relief Traps For Low Flows at Pressures to 186 bar or Specific Gravity Down to 0,49

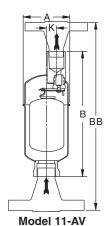
Table AV-403-1. 2313-H	Table AV-403-1. 2313-HLAR Maximum Operating Pressures								
Specific Gravity	1,00 - 0,69	0,68 - 0,54							
Float weight in grams	191	135							
Orifice size (in)	Maximum Operati	ng Pressure in bar							
1/8"									
7/64"									
3/32"	69	33							
5/64"									
1/16"									

Table AV-403-2. 2316-HLAR Maximum Operating Pressures							
Specific Gravity	ty 1,00 – 0,61 0,60 – 0,49						
Float weight in grams	624	439					
Orifice size (in)	Maximum Operating Pressure in bar						
7/32"							
3/16"							
5/32"	69	33					
1/8"							
3/32"							

Table AV-403-3. 2413-HLAR Maximum Operating Pressures							
Specific Gravity	1,00 - 0,90	0,89 - 0,69	0,68 - 0,54				
Float weight in grams	266	191	135				
Orifice size (in)	Maximum Operating Pressure in bar						
1/8"							
7/64"							
3/32"	103	69	33				
5/64"							
1/16"							

Table AV-403-4. 2416-HLAR Maximum Operating Pressures						
Specific Gravity	1,00 - 0,70	0,69 - 0,55				
Float weight in grams	624	439				
Orifice size (in)	Maximum Operati	ng Pressure in bar				
7/32"						
3/16"						
5/32"	103	33				
1/8"						
3/32"						

Table AV-403-5. 2415-HLAR Maximum Operating Pressures							
Specific Gravity	1,00 - 0,85	0,84 - 0,61	0,60 - 0,49				
Float weight in grams	390	255	191				
Orifice size (in)	Maximum Operating Pressure in bar						
3/16"	83	56					
5/32"	119	80	41				
1/8"	124	83	1 4'				
3/32"	124	03					


able AV-403-6. 25133G HLAR	Maximum Operating Pressure	es e			
Specific Gravity	1,00 - 0,98	0,97 - 0,90	0,89 - 0,69	0,68 - 0,54	
Float weight in grams	298	266	191	135	
Orifice size (in)	Maximum Operating Pressure in bar				
1/8"					
7/64"					
3/32"	146	103	69	33	
5/64"					
1/16"					

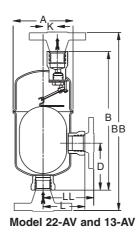

Table AV-403-7. 25155G HLAR Maximum Operating Pressures								
Specific Gravity	1,00 - 0,95	0.85 - 0.63	0,62 - 0,50					
Float weight in grams	437	390	262	191				
Orifice size (in)	Maximum Operating Pressure in bar							
3/16"	93	83	58					
5/32"	132	119	82	41				
1/8"	172	138	83]				
3/32"	1/2	130	00					

Table AV-403-8. 26155G HLAI	R Maximum Operating Pressur	es					
Specific Gravity	1,00 - 0,95	0,94 - 0,86	0,85 - 0,63	0,62 - 0,50			
Float weight in grams	437	390	262	191			
Orifice size (in)	Maximum Operating Pressure in bar						
3/16"	93	83	58				
5/32"	132	119	82	41			
1/8"	186	138	83] "'			
3/32"	186	130					

Free Floating Lever Air/Gas Vents — All Stainless Steel For Pressures to 41 bar or Specific Gravity Down to 0,50

The Armstrong all-stainless steel guided lever air vents have been developed to provide positive venting of air/gases under pressure.

The body and cap and all working parts of the models 11-AV, 22-AV and 13-AV are made of high strength, corrosion resistant stainless steel. Body and caps are welded together to form a permanently sealed, tamperproof unit with no gaskets. Elliptical floats and high leverage provide up to 195 m³/h capacity for these compact air/gas vents. Lever action is guided to assure proper seating of the valve under all operating conditions.

11-AV, 22-AV and 13-AV - All stainless steel construction where exposure to either internal or external corrosion is a problem. These air/gas vents have the same proven free floating mechanisms used in other Armstrong steam traps. Pressures to 41 bar @ 38°C.

Table AV-404-1. 10-AV Series Physical Data							
Model No.	11-AV	22-AV	13-AV				
Pipe Connections	15 – 20**	20	25				
"A"	70	99	114				
"B"	183	221	289				
"BB" (PN40*)	225 – 230	271	375				
"D"	_	86	156				
"K"	14	22	30				
"L"	_	67	83				
"LL" (PN40*)	-	117	126				
Weight in kg (screwed & SW)	0,80	2,3	3,4				
Weight in kg (flanged PN40*)	2,9 - 4,0	5,2	7,3				
Maximum Allowable Pressure (Vessel Design)	34 bar @ 38°C 30 bar @ 260°C	41 bar @ 38°C 33 bar @ 260°C	39 bar @ 38°C 34 bar @ 360°C				

^{*} Standard flanges are in carbon steel, stainless steel flanges are optional. Other flange sizes, ratings and face-to-face dimensions are available on request.

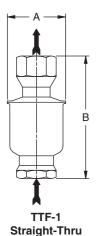
Shade indicates products that are CE Marked according to the PED (97/23/EC). All the other models comply with the Article 3.3 of the same directive.

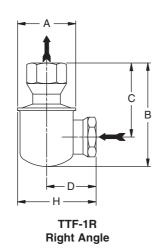
Table AV-404-2. 10-AV Series List of Materials								
Model No.	Valve & Seat	Leverage System	Float	Body & Cap				
11-AV	*440	303/304	304	Sealed				
22-AV	Stainless	Stainless	Stainless	Stainless Steel				
13-AV	Steel	Steel	Steel	304-L				

^{*} Type 316 SS valve and seat available. Consult factory.

Free Floating Lever Air/Gas Vents — All Stainless Steel For Pressures to 41 bar or Specific Gravity Down to 0,50

Table AV-405-1. 11-AV Maximum Operating Pressures							
Minimum Specific Gravity	0,75 0,50						
Float weight in grams	82 – Standard 59 – Special						
Orifice Size (in)	Maximum Operating Pressure in bar						
1/8"	12	8					
1/8" #38	12 18	8 12					


Table AV-405-2. 22-AV N	Maximum O	perating Pre	essure								
Specific Gravity*	1,00	0,95	0,90	0,85	0,80	0,75	0,70	0,65	0,60	0,55	0,50
Float weight in grams	282	268	254	240	226	212	152	141	130	119	109
Orifice Size (in)		Maximum Operating Pressure in bar									
5/16"	2,4	2,3	2,2	2,0	1,9	1,8	1,3	1,2	1,1	1,0	0,9
1/4"	3,9	3,7	3,5	3,4	3,2	3,0	2,1	2,0	1,8	1,7	1,5
3/16"	8,7	8,2	7,8	7,4	7,0	6,5	4,7	4,4	4,1	3,7	3,4
5/32"	14,9	14,2	13,5	12,7	12,0	11,2	8,1	7,6	7,0	6,4	5,8
1/8"	25,6	24,3	23,0	21,8	20,5	19,2	13,9	12,9	12,0	11,0	10,0
7/64"	32,7	31,1	29,5	27,9	26,2	24,6	17,8	16,5	15,3	14,0	12,8
#38	40,7	38,7	36,7	34,7	32,7	30,6	22,1	20,6	19,0	17,5	15,9
5/64"	41,4	41,4	41,4	41,4	41,4	41,4	32,6	30,3	28,1	25,8	23,5


Specific Gravity*	1,00	0,95	0,90	0,85	0,80	0,75	0,70	0,65	0,60
Float weight in grams	423	402	381	360	339	318	296	275	254
Orifice Size (in)		Maximum Operating Pressure in bar							
1/2"	1,5	1,4	1,3	1,3	1,2	1,1	1,0	1,0	0,9
3/8"	3,1	3,0	2,8	2,7	2,5	2,3	2,2	2,0	1,9
5/16"	5,0	4,7	4,5	4,2	4,0	3,8	3,5	3,3	3,0
9/32"	6,6	6,3	6,0	5,6	5,3	5,0	4,7	4,3	4,0
1/4"	9,9	9,4	8,9	8,5	8,0	7,5	7,0	6,5	6,0
7/32"	14,0	13,0	13,0	12,0	11,0	10,7	10,0	9,3	8,6
3/16"	21,0	20,0	19,0	18,0	17,0	16,0	15,0	14,0	13,0
5/32"	33,0	32,0	30,0	28,0	27,0	25,0	24,0	22,0	20,0
1/8"	39,0	39,0	39,0	39,0	39,0	39,0	39,0	39,0	39,0
7/64"	39,0	39,0	39,0	39,0	39,0	39,0	39,0	39,0	39,0

^{*} If specific gravity falls between those shown, use next lowest: e.g., if actual gravity is 0,73, use 0,70 specific gravity data.

Armstrong Stainless Steel Thermostatic Air Vents For Pressures to 20 bar...Capacities to 177 m³/h

Armstrong offers Thermostatic Air Vents for positive venting of air and other non-condensable gases from steam in chamber type heat transfer equipment. Typical applications include jacketed kettles, retorts, vulcanizers, jacketed sterilizers or other contained equipment where air could accumulate in remote areas of the steam chamber and reduce heat transfer capacity. These vents are balanced pressure air vents that respond to the pressure-temperature curve of steam. Air is automatically vented at slightly below steam temperature throughout the entire operating pressure range.

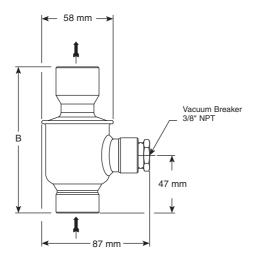
Features

- Suitable for pressures from 0 to 20 bar
- All 304-L stainless steel bodies sealed, tamper-proof
- Balanced pressure thermostatic element vents air at slightly below steam temperature over the entire pressure range - no adjustments required
- Dependable, proven phosphor-bronze bellows caged in stainless steel with bronze valve and stainless steel seat
- Available in straight-thru or right-angle connections

Armstrong thermostatic air vents should be installed at the highest point on a steam chamber, with the air vent located above the chamber. This will minimize the possibility of any liquid carryover, and air can be vented at atmosphere without a

Table AV-406-1. TTF-1 List of Materials	
Name of Part	Material
Body	304-L Stainless steel
Connections	304 Stainless steel
Balanced Pressure Thermostatic Air Vent	Stainless steel and bronze with Phosphor-bronze bellows, entire unit caged in stainless steel
Gasket	Copper clad non-asbestos
Ontional, All stainless stael the small stain air yeart	-

Optional: All stainless steel thermostatic air vent.


Model No.	Straight-thru Connections TTF-1		Right-Angle Connections TTF-1R	
Pipe Connections	mm	mm	mm	mm
ripe connections	15	20	15	20
"A" Diameter	57	57	57	57
"B" Height	114	119	95	100
"C" © inlet to face of outlet	-	-	67	71
"D" © outlet to face of inlet	-	-	49	48
"H"	-	-	78	76
Weight in kg (screwed)	0,4	0,5	0,4	0,5
Maximum Allowable Pressure (Vessel Design)	20 bar @ 232°C			
Maximum Operating Pressure	20 bar			
Discharge Orifice Size	3/16"			

All models comply with the article 3.3 of the PED (97/23/EC).

Stainless Steel Thermostatic Air Vent/Vacuum Breaker

For Pressures to 10 bar...Capacities to 93 m³/h

The Armstrong TAVB is a combination thermostatic air vent/vacuum breaker that is ideally suited for steam-filled vessels with modulating controls. The TAVB will vent air and other non-condensables from vessels such as shell and tube heat exchangers, jacketed kettles and steam coils during their operation. It will also break the vacuum that forms during steam control modulation.

This balanced pressure air vent responds to the pressuretemperature curve of steam, and the soft-seated vacuum breaker responds to 0,0051 bar of vacuum.

Features

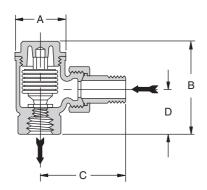
Maximum allowable pressure: 20 bar 185°C Maximum allowable temperature: Maximum working pressure: 10 bar

All stainless steel welded construction

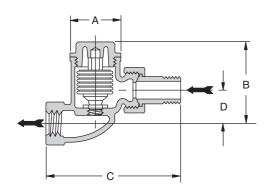
NPT connections

Armstrong thermostatic air vents should be installed at the highest point on a steam chamber, with the air vent located above the chamber. This will minimize the possibility of any liquid carryover, and air can be vented to atmosphere without a drain line.

Model No.		TAVB-2	TAVB-3
Dina Connections	Thermostatic Air Vent	15	20
Pipe Connections	Vacuum Breaker	3/8"	3/8"
"A" (Diameter)		57	57
"B" (Height)		117	119
"C" (€ Inlet to Face of Vacuum Breaker)		54	54
Weight lb (kg)		0,45	0,57
Maximum Allowable Pressure (Vessel Design)		20 bar @ 185°C	
Maximum Operating Pressure		10 bar	
Discharge Orifice Size		3/16"	


Table AV-407-2. TAVB List of Materials	
Name of Part	Material
Body	304L Stainless Steel
Connections	304 Stainless Steel
Balanced Pressure Thermostatic Air Vent	Stainless steel and bronze with phosphor-bronze bellows, entire unit caged in stainless steel
Gasket	Copper clad non-asbestos
Vacuum Breaker Body	303 Stainless Steel
Valve	Stainless Steel
Spring	302 Stainless Steel
"0" Ring	EPDM
Screen	Stainless Steel

All sizes comply with the article 3.3 of the PED (97/23/EC).



TS-2 Thermostatic Air Vent

For Pressures to 3,5 bar...Capacities to 44 m³/h

TS-2 Air Vent Angle Type

TS-2 Air Vent Straight Type

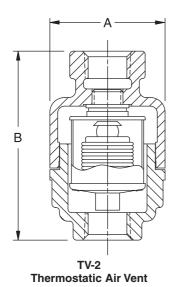
Armstrong TS thermostatic air vent is offered in both angle and straight patterns. The TS-2 has a balanced pressure thermostatic element with a high quality multiple-convolution bellows. It's ideal for venting air from equipment such as steam radiators and convectors, small heat exchangers, and unit heaters. The TS-2 comes with a strong, cast bronze body and a stainless steel seat. The valve and seat are renewable in-line.

Materials

Cap: Bronze, ASTM B62 Body: Bronze, ASTM B62 Union Nipple: Brass, ASTM B584 Valve: Brass

Valve Seat: Stainless steel

Element: Phosphor-bronze bellows


Model	TS-2			
Pattern	Angle Straight			ight
Pipe connections -	mm	mm	mm	mm
ripe connections	15	20	15	20
'A" Diameter	41	41	41	41
"B" Height	75	76	68	73
"C"	65	73	102	114
"D"	35	41	28	33
Weight in kg (screwed)	0,68	0,79	0,68	0,91

All sizes comply with the article 3.3 of the PED (97/23/EC).

TV-2 Thermostatic Air Vent

For Pressures to 9 bar...Capacities to 78 m³/h

Armstrong offers the Model TV-2 Balanced Pressure Thermostatic Air Vent for positive venting of air from chamber type heat transfer equipment with no loss of steam. Typical applications include jacketed kettles, retorts, vulcanizers, jacketed sterilizers or other contained equipment where air could accumulate at the top of the steam chamber and reduce heat transfer capacity.

The Model TV-2 is a balanced-pressure thermostatic air vent that responds to the pressure-temperature curve of steam at any pressure from light vacuum to maximum operating pressure. Air is automatically vented at slightly below steam temperature throughout the entire operating pressure range.

The thermostatic element is a charged multi-convolution phosphor bronze bellows caged in stainless steel. Valve and seat are also stainless steel designed to meet the most rigid cycling specifications known for this type of service.

Features

- · Stainless steel hemispherical valve and seat
- Thermostatic element comprises a multi-convolution phosphor bronze bellows caged in stainless steel
- Thermostatic element is charged with water to provide positive opening of the valve at slightly below steam temperature and positive closing in the presence of steam throughout the operating pressure range
- ASTM B62 cast bronze body

Armstrong Model TV-2 Thermostatic Air Vents should be installed at the highest points of steam chambers with inlet connections to the vents higher than the highest points of the chambers. Thus installed there is a minimum hazard of any liquid carryover and air can be vented to atmosphere with no drain line necessary.

Table AV-409-1. TV-2 Physical Data			
Pipe Connections	mm		
r ipe connections	15		
"A" (Diameter)	56		
"B" (Height)	89		
Weight in kg (screwed)	0,8		
Maximum Operating Pressure	9 bar		
Maximum Temperature	177°C		

Table AV-409-2. TV-2 Materials	
Name of Part	Material
Body & Cap	Cast bronze ASTM B62
Gasket	Compressed non-asbestos
Thermostatic Unit Bellows Cage and Cover	Phosphor bronze Stainless steel
Thermostatic Unit Gasket	Copper clad

All sizes comply with the article 3.3 of the PED (97/23/EC).

1-AVCW See-Thru Air Vent for Ozone Applications

For Pressures to 10 bar or Specific Gravity Down to 0,80

What Is Ozone?

Ozone is a gas that forms naturally during thunderstorms when lightning converts normal oxygen molecules (O_2) into ozone (O_3) . The fresh, sweet smell in the air after a storm is the smell of ozone. The unstable ozone molecule reacts rapidly with most substances and is an extremely strong natural oxidant.

How Is Commercial Ozone Produced?

Ozone can be formed by exposing air to ultraviolet light; however, the most common method of generating ozone is by passing air through an electrical discharge. Because ozone has strong oxidizing properties, its production requires corrosion-resistant equipment.

How Is Ozone Used in Water Filtration and Purification?

Because ozone is such an effective oxidant, it kills viruses, bacteria, mold, mildew, fungus and germs. Passing ozone through water achieves high purification rates without any chemical residue. Oxygen is the only by-product.

Typical Customer Applications:

- · Purifying standing ground water in Third World countries.
- Conditioning water for poultry and livestock.
- · Purifying water in the bottled water industry.
- · Filtering and purifying water for process applications.

A See-Thru Body Shows You It's Working

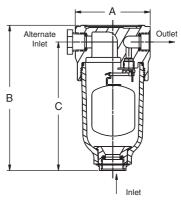
Now, you can literally see what you've been missing. The Armstrong 1-AVCW See-Thru Air Vent lets you easily check its operating condition. You won't have to waste time and money scheduling maintenance that isn't needed, and you can quickly react to a condition before it becomes a problem.

Efficient Operation

Simple ball-float mechanism doesn't need electricity to operate. The air vent automatically discharges only when air or gas is present. No liquid is lost, as with manual venting.

Positive Seating

Free-floating valve mechanism ensures positive seating and prevents liquid loss. There are no fixed pivots to wear or create friction. Wear points are heavily reinforced for long life.


Corrosion Resistance

Long-lasting PBT (polybutylene terephthalate) cap provides trouble-free operation. Stainless steel internal parts resist corrosion and reduce maintenance.

Compare - and Save the Difference

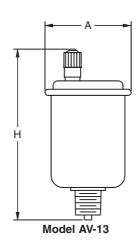
Seeing really is believing – especially when you compare the Armstrong 1-AVCW See-Thru Air Vent with manual venting. Measure the time and money you can save with a more efficient, easier-to-maintain system. For more information or technical assistance, contact your local Armstrong Representative.

Note: The Armstrong 1-AVCW should not be used in an environment where there are high levels of ketones or chlorinated or aromatic hydrocarbons.

1-AVCW

Table AV-410-1. 1-AVCW List of Materials			
Name of Part	Material		
Сар	PBT (Polybutylene Terephthalate)		
Body	Polysulfone*		
O-Rings (Body Cap and Fitting)	Viton		
Float Lever and Screws	Stainless Steel		
Valve & Seat	Stainless Steel		
Fitting	PBT (Polybutylene Terephthalate)		
Retainer Ring	Zinc Plated Steel		

^{*} UV sensitive


Table AV 440 0 4 AVOW Division Date	
Table AV-410-2. 1-AVCW Physical Data	
	mm
Inlet Connection (In Body)	20
Inlet Connection (Alternate)	15
Outlet Connection	15
"A" Face-to-Face	89
"B" Height	172
"C" Bottom to Q	152
Maximum Allowable Pressure (Vessel Design)	10 bar @ 66°C
Maximum Operating Pressure	10 bar
Specific Gravity Range	1,00 to 0,80
Weight in kg (screwed)	0,5

All sizes comply with the article 3.3 of the PED (97/23/EC).

Table AV-410-3. 1-AVCW Capacity			
Differential Pressure	Orifice Size	m³/h	
bar	Offilia dize	III /II	
1,0		7,3	
2,0		11,0	
3,5		16,1	
5,0	1/8"	22,2	
7,0		28,7	
8,5		34,8	
10,5		41,1	

Note: Discharge of air through an orifice in m³/h at a standard atmospheric pressure of 1 bar(a) and 21°C.

Model AV-11

For Hot or Cold Water and Non-Viscous Liquids

Air vent models AV-11 and AV-13 are compact float-type valves for the removal of air and other gases from hydronic heating and cooling systems, liquid chilling operations and other light liquid services.

Table AV-411-1. AV-11 & AV-13 Physical Data				
Model	AV-11	AV-13		
Connection	mm	mm	mm	
Size	3	15 Female	20 Male	
"A"	44	54	54	
"H"	86	118	118	
Weight in kg (screwed)	0,11	0,23		

All models comply with the article 3.3 of the PED (97/23/EC).

Table AV-411-2. AV-11 & AV-13 Capacities				
AV-11		AV-13		
ΔΡ	Capacities	ΔΡ	Capacities	
bar	m³/h	bar	m³/h	
0,24	0,84	1,1	1,7	
0,69	1,7	3,3	3,4	
1,7	2,5	5,8	5,1	
2,4	3,2	8,3	6,8	
3,4	3,4	10,0	8,3	

Table AV-411-3. AV-11 &	ole AV-411-3. AV-11 & AV-13 Specifications					
Model	Application	Working Pressure	Maximum Temperature	Connection	Hydraulic Test Body	
		bar	°C		bar	
AV-11 Hot or Cold Water	0,06 - 3,4	99	NPT Screwed	14		
AV-13	Tiot of Cold Water	0,06 - 10,3]	INI I OCIEWEU	24	

Table AV-411-4. AV-11 & AV-13 Materials					
Valve	Float	Disc			
Brass	Polypropylene	Nitrile			